domingo, 1 de dezembro de 2019

Na física de partículas, a eletrodinâmica quântica ( QED ) é a teoria relativística da eletrodinâmica dos campos quânticos . Em essência, descreve como a luz e a matéria interagem e é a primeira teoria em que é alcançado o pleno acordo entre a mecânica quântica e a relatividade especial . O QED descreve matematicamente todos os fenômenos que envolvem partículas eletricamente carregadas interagindo por meio da troca de fótons e representa o equivalente quântico do eletromagnetismo clássico fornecendo um relato completo da matéria e da interação da luz.
Em termos técnicos, o QED pode ser descrito como uma teoria de perturbação do vácuo quântico eletromagnético Richard Feynman chamou de "a jóia da física" por suas previsões extremamente precisas de quantidades como o momento magnético anômalo do elétron e a mudança de Lamb dos níveis de energia do hidrogênio 



Amplitudes de probabilidade editar ]

Feynman substitui números complexos por setas giratórias, que começam na emissão e terminam na detecção de uma partícula. A soma de todas as setas resultantes representa a probabilidade total do evento. Neste diagrama, a luz emitida pela fonte S rebate alguns segmentos de espelho (em azul) antes de atingir o detector a P . A soma de todos os caminhos deve ser levada em consideração. O gráfico abaixo mostra o tempo total gasto para percorrer cada um dos caminhos acima.
A mecânica quântica introduz uma mudança importante na maneira como as probabilidades são computadas. As probabilidades ainda são representadas pelos números reais usuais que usamos para as probabilidades em nosso mundo cotidiano, mas as probabilidades são computadas como o quadrado das amplitudes de probabilidade , que são números complexos .
Feynman evita expor o leitor à matemática de números complexos, usando uma representação simples, mas precisa, deles como setas em um pedaço de papel ou tela. (Elas não devem ser confundidas com as setas dos diagramas de Feynman, que são representações simplificadas em duas dimensões de uma relação entre pontos em três dimensões do espaço e uma do tempo.) As setas de amplitude são fundamentais para a descrição do mundo dada pelo quantum. teoria. Eles estão relacionados às nossas idéias cotidianas de probabilidade pela regra simples de que a probabilidade de um evento é o quadrado do comprimento da seta de amplitude correspondente. Portanto, para um determinado processo, se duas amplitudes de probabilidade, v e w , estiverem envolvidas, a probabilidade do processo será dada por
x


FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI. =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

ou
x


FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI. =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

As regras relativas à adição ou multiplicação, no entanto, são as mesmas que acima. Mas onde você esperaria adicionar ou multiplicar probabilidades, em vez disso, você adiciona ou multiplica amplitudes de probabilidade que agora são números complexos.
Adição de amplitudes de probabilidade como números complexos
Multiplicação de amplitudes de probabilidade como números complexos
Adição e multiplicação são operações comuns na teoria dos números complexos e são dadas nas figuras. A soma é encontrada da seguinte maneira. Deixe o início da segunda seta no final da primeira. A soma é então uma terceira flecha que vai diretamente do início do primeiro até o final do segundo. O produto de duas setas é uma seta cujo comprimento é o produto dos dois comprimentos. A direção do produto é encontrada adicionando os ângulos pelos quais cada um dos dois foi girado em relação a uma direção de referência: isso indica o ângulo em que o produto é girado em relação à direção de referência.
Essa mudança, de probabilidades a amplitudes de probabilidade, complica a matemática sem alterar a abordagem básica. Mas essa mudança ainda não é suficiente porque falha em levar em consideração o fato de que ambos os fótons e elétrons podem ser polarizados, ou seja, suas orientações no espaço e no tempo devem ser levadas em consideração. Portanto, P ( A a B ) consiste em 16 números complexos, ou setas de amplitude de probabilidade. [1] : 120–121 Há também algumas pequenas alterações relacionadas à quantidade j , que pode ter que ser girada por um múltiplo de 90 ° para algumas polarizações, o que é interessante apenas para a contabilidade detalhada.
Associado ao fato de o elétron poder ser polarizado, há outro pequeno detalhe necessário, que está relacionado ao fato de um elétron ser um férmion e obedecer às estatísticas de Fermi – Dirac . A regra básica é que, se tivermos a amplitude de probabilidade para um determinado processo complexo envolvendo mais de um elétron, quando incluirmos (como sempre devemos) o diagrama complementar de Feynman no qual trocamos dois eventos de elétrons, a amplitude resultante é o inverso - o negativo - do primeiro. O caso mais simples seria dois electrões a partir de A e B terminando em C e D . A amplitude seria calculada como a "diferença", E ( Apara D ) × E ( B para C ) - E ( A para C ) × E ( B para D ) , onde esperaríamos, de nossa idéia cotidiana de probabilidades, que seria uma soma. [1] : 112-113

Propagadores editar ]

Finalmente, é preciso calcular P ( A a B ) e E ( C a D ) correspondentes às amplitudes de probabilidade para o fóton e o elétron, respectivamente. Estas são essencialmente as soluções da equação de Dirac , que descrevem o comportamento da amplitude de probabilidade do elétron e as equações de Maxwell , que descrevem o comportamento da amplitude de probabilidade do fóton. Estes são chamados propagadores de Feynman . A tradução para uma notação comumente usada na literatura padrão é a seguinte:
x


FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI. =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

onde um símbolo abreviado como significa os quatro números reais que dão o tempo e a posição em três dimensões do ponto marcado Uma .

Renormalization massa editar ]

Historicamente, surgiu um problema que atrasou o progresso por vinte anos: embora comecemos com a suposição de três ações "simples" básicas, as regras do jogo dizem que, se queremos calcular a amplitude de probabilidade de um elétron ir de A a B , devemos levar em consideração todas as formas possíveis: todos os diagramas possíveis de Feynman com esses pontos de extremidade. Assim, haverá uma maneira em que o electrão desloca para C , emite um fotão lá e em seguida absorve-lo novamente no D antes de passar para B . Ou poderia fazer esse tipo de coisa duas vezes ou mais. Em suma, temos um fractal- situação semelhante na qual, se olharmos atentamente para uma linha, ela se divide em uma coleção de linhas "simples", cada uma das quais, se analisada de perto, é por sua vez composta por linhas "simples" e assim por diante ad infinitum . Esta é uma situação desafiadora para lidar. Se adicionar esse detalhe apenas alterasse um pouco as coisas, não teria sido tão ruim, mas ocorreu um desastre quando se descobriu que a simples correção mencionada acima levava a amplitudes infinitas de probabilidade. Com o tempo, esse problema foi "corrigido" pela técnica de renormalização . No entanto, o próprio Feynman permaneceu infeliz com isso, chamando-o de "processo impreciso". [1] : 128

Conclusões editar ]

Dentro da estrutura acima, os físicos foram capazes de calcular com alto grau de precisão algumas das propriedades dos elétrons, como o momento anômalo do dipolo magnético . No entanto, como Feynman aponta, ele não explica por que partículas como o elétron têm as massas que possuem. "Não existe uma teoria que explique adequadamente esses números. Usamos os números em todas as nossas teorias, mas não os entendemos - o que são ou de onde vêm. Acredito que, de um ponto de vista fundamental, isso é um problema muito interessante e sério ". [1] : 152

Formulação matemática editar ]

Matematicamente, o QED é uma teoria abeliana de gauge com o grupo de simetria U (1) . campo do medidor , que medeia a interação entre os campos de spin-1/2 carregados , é o campo eletromagnético . O QED Lagrangiano para um campo spin-1/2 interagindo com o campo eletromagnético é dado em unidades naturais pela parte real de [22] : 78

x


FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI. =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

Onde
são matrizes de Dirac ;
um campo bispinor de partículas spin-1/2 (por exemplo, campo elétron - pósitron );
, chamado "psi-bar", às vezes é chamado de adjetivo Dirac ;
é o derivado covariante de bitola ;
e é a constante de acoplamento , igual à carga elétrica do campo do bispino;
m é a massa do elétron ou pósitron;
é o potencial quatro covariante do campo eletromagnético gerado pelo próprio elétron;
 é o campo externo imposto pela fonte externa;
é o tensor do campo eletromagnético .

Equações de movimento editar ]

Substituir a definição de D no Lagrangiano dá
x


FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI. =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

A partir deste Lagrangiano, as equações de movimento para os campos ψ e A podem ser obtidas.
Usando a equação de Euler-Lagrange da teoria dos campos para ψ ,








2 )
x


FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI. =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

Os derivados do Lagrangiano relativos a ψ são
Inserir isso em ( 2 ) resulta em
Trazer o meio termo para o lado direito gera

x


FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI. =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

O lado esquerdo é como a equação original de Dirac , e o lado direito é a interação com o campo eletromagnético.
Usando a equação de Euler – Lagrange para o campo A ,




3 )
os derivados desta vez são
Substituir novamente em ( 3 ) leva a

x


FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI. =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


Agora, se impormos a condição de medidor de Lorenz
as equações reduzem a
x


FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI. =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

que é uma equação de onda para os quatro potenciais, a versão QED das equações clássicas de Maxwell no medidor de Lorenz . (O quadrado representa o operador D'Alembert ,.)

Imagem de interação editar ]

Essa teoria pode ser quantizada diretamente tratando os setores bosônico e fermiônico esclarecimentos necessários ] como livres. Isso nos permite construir um conjunto de estados assintóticos que podem ser usados ​​para iniciar o cálculo das amplitudes de probabilidade para diferentes processos. Para fazer isso, precisamos calcular um operador de evolução , que para um dado estado inicial dará um estado final de tal maneira que tenha [22] : 5
x


FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI. =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

Esta técnica também é conhecida como a S-matriz . O operador de evolução é obtido na imagem da interação , onde a evolução do tempo é dada pela interação hamiltoniana, que é a integral no espaço do segundo termo na densidade lagrangiana dada acima: [22] : 123
x


FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI. =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


e assim, um tem [22] : 86
x


FUNÇÃO FUNDAMENTAL E GERAL Do SISTEMA  [SDCTIE GRACELI]   DE INTERAÇÕES E TRANSFORMAÇÕES EM CADEIAS ,  DECADIMENSIONAL E CATEGORIAL .E DE ESTADOS TRANSICIONAIS  GRACELI. =

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

onde T é o operador que solicita a hora . Esse operador de evolução só tem significado como uma série, e o que obtemos aqui é uma série de perturbações com a constante de estrutura fina como parâmetro de desenvolvimento. Essa série é chamada de série Dyson .